A Novel Method for the Direct Sulfonation of CH_4 with SO_3 in the Presence of KO_2 and a Promoter

Sudip Mukhopadhyay and Alexis T. Bell*

Department of Chemical Engineering, University of California, Berkeley, California 94720, U.S.A.

Abstract:

Direct sulfonation of methane with SO₃ to methanesulfonic acid (MSA) is accomplished in sulfuric acid in the presence of a small amount of KO₂ as the free radical initiator and a metal chloride. Of the several metal chlorides examined, RhCl₃ was found to be the most effective promoter. While KO₂ alone can activate methane, the conversion of SO₃ to MSA increases 2.3-fold when KO₂ and RhCl₃ are both present in the reaction mixture. The effects of different process parameters such as temperature, SO₃ concentration, methane pressure, KO₂ concentration, and RhCl₃ concentration have been examined on the rate of reaction. The reaction is optimized at a KO₂-to-RhCl₃ molar ratio of 3.16. Strongly acidic solvents such as H₂SO₄ or CF₃SO₃H are necessary for the reaction. No MSA was formed when the reaction was carried out in DMSO. A mechanism is proposed to explain the activation of CH₄ to form MSA. A critical part of the sequence is in situ formation of a metal-peroxo species via the reaction of KO₂, acid solvent, and RhCl₃.

Introduction

Selective functionalization of methane to value-added products is a subject of considerable contemporary interest.^{1,2} Because of favorable thermodynamics, considerable effort has been devoted to the oxidation and oxidative carbonylation of methane.³ By contrast, the sulfonation of methane has not received as much attention despite its commercial importance.⁴ The current commercial process for the synthesis of methanesulfonic acid (MSA) occurs via the chlorine oxida-

tion of methylmercaptan.^{5,6} While this process is highly productive, it produces six moles of HCl per mole of MSA, resulting in a coupling of the demand for the primary product and the byproduct. As an alternative it is interesting to consider the direct sulfonation of methane using SO₃ or SO₂ and O₂ as the sulfonating agent.⁷ It has been shown⁸ that methane can be sulfonated with SO₃⁹ in strong acids using a free radical initiator.¹⁰ The free radical initiators used in this reaction are often highly expensive potassium persulfate or phosphate salts or highly reactive metal peroxides which are difficult to handle in case of a bulk production scale. Since aqueous H_2O_2 is only minimally active, it is worth considering alkali superoxides. In this communication, we show that methane will undergo liquid-phase sulfonation with SO₃ in sulfuric acid to form MSA, using KO₂ as free radical initiators in conjunction with RhCl₃. To the best of our knowledge, this is the first example of using potassium superoxide in the liquid phase to activate methane.

Results and Discussion

In a typical reaction (see Experimental Section), CH_4 and SO_3 were reacted in fuming sulfuric acid in a high-pressure autoclave. Small amounts of KO_2 and a metal chloride were added to the liquid phase. Reactions were carried out for 18 h at 95 °C, and the MSA thus formed was identified and quantified by ¹H NMR.^{8a}

Table 1 shows the effect of different promoters on the rate of methane sulfonation. Notably, using KO₂ as the free radical initiator in the absence of any promoters leads to a 6% conversion of SO₃ to MSA. The presence of promoters such as PtCl₂, PdCl₂, and RuCl₃ has a negative effect on MSA synthesis. On the other hand, CaCl₂, FeCl₃, and HgCl₂ are moderately active as promoters, and RhCl₃ is particularly effective under the reaction conditions investigated.

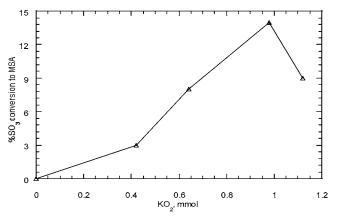
- (6) Guertin, R. U.S. Patent 3,626, 004, 1971.
- (7) (a) Basickes, N.; Hogan, T. E.; Sen, A. J. Am. Chem. Soc. 1996, 118, 13111.
 (b) Mukhopadhyay S.; Bell, A. T. J. Am. Chem. Soc. 2003, 125, 4406. (c) Mukhopadhyay, S.; Bell, A. T. Chem. Commun. 2003, 1590.
- (8) (a) Lobree, L. J.; Bell, A. T. Ind. Eng. Chem. Res. 2001, 40, 736. (b) Mukhopadhyay, S.; Bell, A. T. Ind. Eng. Chem. Res. 2002, 41, 5901. (c) Mukhopadhyay, S.; Bell, A. T. Org. Process Res. Dev. 2003, 7, 161. (d) Mukhopadhyay, S.; Bell, A. T. Angew. Chem., Int. Ed. 2003, 42, 1019. (e) Mukhopadhyay, S.; Bell, A. T. Angew. Chem., Int. Ed. 2003, 42, 2993.
- (9) (a) Sulfur Trioxide and Oleum: Storage and Handling; Dupont Corporation: Wilmington, DE. (b) Royle, A. T. Ind. Chem. 1956, 32, 421.
- (10) For a representative review on the selective alkane transformation via radicals and radical cations, see: Fokin, A. A.; Schreiner, P. R. *Chem. Rev.* 2002, 102, 1551.

^{*} Author for correspondence. E-mail: bell@cchem.berkeley.edu. Fax: (510) 642-4778.

 ⁽a) Hill, C. L. Activation and Functionalization of Alkanes; Wiley: New York, 1989. (b) Axelrod, M. G.; Gaffney, A. M.; Pitchai, R.; Sofranko, J. A. Natural Gas Conversion II; Elsevier: Amsterdam, The Netherlands, 1994; p 93. (c) Starr, C.; Searl, M. F.; Alpert, S. Science 1992, 256, 981.
 (d) Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes; D. Reidel: Dordrecht, The Netherlands, 1984. (e) Olah, G. A.; Molnar, A. Hydrocarbon Chemistry; Wiley: New York, 1995. (f) Lin, M.; Sen, A. Nature 1994, 368, 613. (g) Sen, A. Acc. Chem. Res 1998, 31, 550. (h) Labinger, J. A. Fuel Process. Technol. 1995, 42, 325. (i) Crabtree, R. H. Chem. Rev. 1995, 95, 987. (j) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. (k) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (l) Gesser, H. D.; Hunter, N. R. Catal. Today 1998, 42, 183.

^{(2) (}a) Arndtsen, B. A.; Bergman, R. G. *Science* **1995**, *270*, 1970. (b) Bromberg, S. E.; Yang, W.; Asplund, M. C.; Lian, T.; McNamara, B. K.; Kotz, K. T.; Yeston, J. S.; Wilkens, M.; Frei, H.; Bergman, R. G.; Harris, C. B. *Science* **1997**, *278*, 260.

^{(3) (}a) Asadullah, M.; Kitamura, T.; Fujiwara, Y. Angew. Chem., Int. Ed. 2000, 39, 2475. (b) Chepaikin, E. G.; Bezruchenko, A. P.; Leshcheva, A. A.; Boyko, G. N.; Kuzmenkov, I. V.; Grigoryan, E. H.; Shilov, A. E. J. Mol. Catal. A: Chem. 2001, 169, 89. (c) Periana, R. A.; Taube, D. J.; Evitt, E. R.; Loffer, D. G.; Wentreek, P. R.; Voss, G.; Masuda, T. Science 1993, 259, 340. (d) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280, 560.


^{(4) (}a) Ullmann's Encyclopedia of Industrial Chemistry; VCH: Weinheim, 1994; Vol. A25, pp 503-506. (b) Beringer, F. M.; Falk, R. A. J. Am. Chem. Soc. 1959, 81, 2997. (c) Young, H. A. J. Am. Chem. Soc. 1937, 59, 811. (d) Murray, R. C. J. Chem. Soc. 1933, 739.

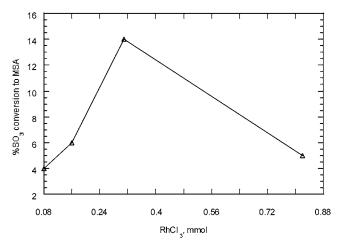
⁽⁵⁾ Kroschwitz, J. I.; Howe-Grant, M. Kirk Othmer Encyclopedia of Chemical Technology; Wiley: New York, 1991.

Table 1. Effect of different promoters on the sulfonation of methane to MSA^a

entry	promoters	<i>t</i> , h	% conversion of SO ₃ to MSA
1	none	18	5
2	PtCl ₂	20	tr
3	$PdCl_2$	19	0
4	RuCl ₃	21	2
5	CaCl ₂	20	8
6	FeCl ₃	18	9
7	HgCl ₂	18	10
8	RhCl ₃	18	14

 a Reaction conditions unless otherwise stated: solvent, fuming sulfuric acid, 5.67 g; SO₃, 1.7 g (21.25 mmol) methane, 300 psig (84.9 mmol); KO₂, 0.98 mmol; promoters, 0.31 mmol; time, 18 h; temperature, 95 °C

Figure 1. Effect of KO₂ concentration on the conversion of SO₃ to MSA. *Reaction conditions:* solvent, fuming sulfuric acid, 5.67 g; SO₃, 1.7 g (21.25 mmol) methane, 300 psig (84.9 mmol); KO₂, 0.98 mmol; RhCl₃, 0.31 mmol; time, 18 h; temperature, 95 °C.


The reaction was studied with different amounts of KO_2 but a fixed amount of RhCl₃. It is observed in Figure 1 that the conversion of SO₃ to MSA increases when the amount of KO₂ in the reaction mixture is raised from 0 to 0.98 mmol. However, a further increase in the amount of KO₂ results in a decrease in the SO₃ conversion to MSA.

The effect of the amount of RhCl₃ added to the reaction mixture is shown in Figure 2. For a constant amount of KO₂, the conversion of SO₃ to MSA increases from 4 to 14% after 18 h as the amount of RhCl₃ is increased from 0.08 to 0.31 mmol. However, a further increase in the ratio of KO₂ to RhCl₃ is deleterious to the MSA yield. The highest conversion of SO₃ to MSA is obtained with 0.31 mmol RhCl₃ in the presence of 0.98 mmol KO₂. Thus, the effective ratio of KO₂ to RhCl₃ is 3.16.

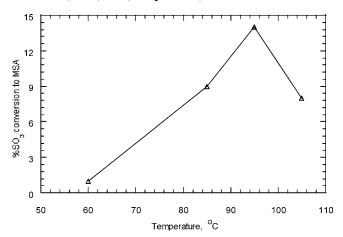
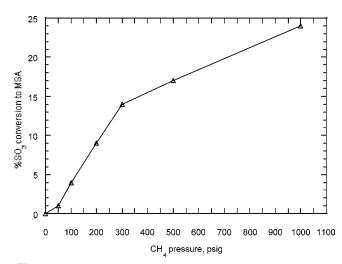

Figure 3 shows that the conversion of SO_3 observed after 18 h increases with increasing temperature up to 95 °C. However, a decrease in the conversion to MSA is observed for temperatures higher than 95 °C.

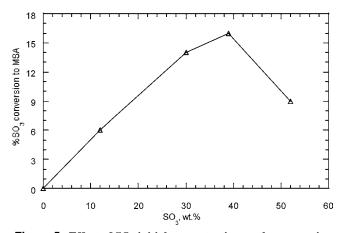
Figure 4 shows the effects of methane pressures on the conversion of SO_3 to MSA. The conversion of SO_3 to MSA increases from 1 to 24% when the methane pressure is increased from 50 to 1000 psig.

The reaction rate also depends on the initial concentration of SO_3 . As shown in Figure 5, with increasing SO_3

Figure 2. Effect of RhCl₃ amount on the conversion of SO₃ to MSA. *Reaction conditions:* solvent, fuming sulfuric acid, 5.67 g; SO₃, 1.7 g (21.25 mmol) methane, 300 psig (84.9 mmol); KO₂, 0.98 mmol; time, 18 h; temperature, 95 °C.


Figure 3. Effect of temperature on the conversion of SO₃ to MSA formation. *Reaction conditions:* solvent, fuming sulfuric acid, 5.67 g; SO₃, 1.7 g (21.25 mmol) methane, 300 psig (84.9 mmol); KO₂, 0.98 mmol; RhCl₃, 0.31 mmol; time, 18 h.

concentration, the MSA conversion increases initially; however, above an initial concentration of 39%, the conversion of SO_3 to MSA decreases due to the formation of methylbisulfate as a byproduct.


The sulfonation of CH_4 requires an acidic solvent. H_2SO_4 is the most effective solvent (14% conversion in 18 h), triflic acid is moderately active (7% conversion in 18 h), and trifluoroacetic acid is the least effective (3% conversion in 20 h). No MSA was formed when DMSO was used as the solvent.

The experimental results can be interpreted in terms of a free radical mechanism. The appearance of C_2H_6 in the autoclave headspace in the absence of SO_3 and the termination of the reaction in the presence of molecular O_2 support our hypothesis of a free radical mechanism. KO_2 readily reacts with H_2SO_4 to form H_2O_2 ($2KO_2 + H_2SO_4 \rightarrow K_2SO_4 + H_2O_2 + O_2$).¹¹ The H_2O_2 thus formed could react with the promoter, RhCl₃ to generate the active radical species, **I**•, which may consist of a rhodium–peroxo or hydroperoxo

⁽¹¹⁾ Vol'nov, I. I. In Peroxides, Superoxides, and Ozonides of Alkali and Alkaline Earth Metals; Petrocelli, A. W., Ed.; Plenum Press: New York, 1966.

Figure 4. Effect of CH₄ partial pressure on the conversion of SO₃ to MSA. *Reaction conditions:* solvent, fuming sulfuric acid, 5.67 g; SO₃, 1.7 g (21.25 mmol); KO₂, 0.98 mmol; RhCl₃, 0.31 mmol; temperature, 95 °C; time, 18 h.

Figure 5. Effect of SO₃ initial concentration on the conversion of SO₃ to MSA. *Reaction conditions:* solvent, fuming sulfuric acid; methane, 300 psig (84.9 mmol); KO₂, 0.98 mmol; RhCl₃, 0.31 mmol; temperature, 95 °C; time, 18 h.

species.^{12,13} The I• abstracts hydrogen from CH_4 to form CH_3 • radicals (reaction 1) which react with SO_3 (reaction 2) to form CH_3SO_3 • radicals which in turn abstract hydrogen from methane to form MSA according to reaction 3.

$$CH_4 + I \bullet \rightarrow CH_3 \bullet + IH$$
 (1)

$$CH_3 \bullet + SO_3 \rightarrow CH_3SO_3 \bullet$$
 (2)

$$CH_3SO_3 \bullet + CH_4 \rightarrow CH_3SO_3H + CH_3 \bullet$$
(3)

While the nature of the composition of I• has not been confirmed, we have recently demonstrated that RhCl₃ in combination with urea $-H_2O_2$ is a particularly effective free radical initiator for the direct sulfonation of CH₄ by SO₃ to form MSA.^{8e} The observed lowering in the conversion of SO₃ to MSA when more than 0.98 mmol of metal superoxide is used can be attributed to an increase in the rate of O₂ formation. Since O₂ is known to act as a free radical scavenger,^{7a} it would be expected to inhibit the formation of MSA. This interpretation is consistent with the failure to observe any MSA when the reaction was carried out in the presence of 40 psig of O₂.

It is noted that KO₂ can initiate the reaction in the absence of a promoter (Table 1, entry 1), suggesting that H₂O₂ generated by the reaction of KO₂ with the acid solvent can activate methane. Consistent with this observation, no reaction was observed in a nonacidic solvent such as DMSO. When RhCl₃ is added to the reaction mixture, the conversion of SO₃ to MSA increases up to a maximum value and then decreases, as shown in Figure 2. The rising portion of this plot can be attributed to an increase in the amount of the metal-peroxo species formed via the reaction of RhCl3 with H_2O_2 . The decrease in the conversion to MSA for a $KO_2/$ RhCl₃ ratio of less than 3 might be associated with the catalyzed decomposition of H2O2 by excess RhCl3. Two other observations support the in situ formation of a metal-peroxo species. The first is that after reaction for 18 h in the presence of RhCl₃ and KO₂ (KO₂/RhCl₃ = 3), the addition of more KO2 resulted in an additional 11% conversion of SO3 to MSA after an additional 18 h of reaction. On the other hand, when the same experiment was carried out in the absence of RhCl₃, no additional MSA was observed after an additional 18 h of reaction. These experiments suggest that a part of the RhCl₃ may be recycled during the reaction. To examine whether Rh₂(SO₄)₃ might have formed by the reaction of RhCl₃ and H₂SO₄, we performed a reaction with Rh₂(SO₄)₃ as a promoter instead of RhCl₃. In this case, hardly any MSA formation was observed. This suggests that during the reaction RhCl₃ does not dissociate completely in fuming H₂-SO₄ and that the chloride anion is not replaced fully by sulfate or bisulfate anions.

The decrease in SO₃ conversion above 95 °C seen in Figure 3 might be due to rapid decomposition of H_2O_2 and the release of O₂. As noted above, the presence of O₂ in the reaction mixture inhibits the formation of MSA. This is attributed to the formation of alkylperoxide species via the reaction of methyl radicals with O₂, which are less active for reaction with SO₃ than methyl radicals.

The effect of SO₃ concentration on the conversion of SO₃ to MSA seen in Figure 5 can be explained as follows. Below 40 wt % SO₃, the increase in conversion is attributed to the increase in the driving force for reaction 2. However, for higher SO₃ levels, MSA formation is reduced by the formation of CH₃OSO₃H and CH₃(SO₃)₂H. A similar effect has been observed in several other reaction systems utilizing a free radical initiator to produce MSA from CH₄ and SO₃.⁸

^{(12) (}a) Springborg, J.; Zehnder, M. Helv. Chim. Acta 1984, 67, 2218; cf. Chem. Abstr. 1985, 102, 105050. (b) Komozin, P. N.; Zakharchenko, E. A. Zh. Neorg. Khim. 1997, 42, 1297; cf. Chem. Abstr. 1997, 127, 338510. (c) Selke, M.; Foote, C. S.; Karney, W. L. Inorg. Chem. 1993, 32, 5425. (d) Conte, V.; Di Furia, F.; Modena, G. In Transition-Metal-Catalyzed Oxidation: The Role of Peroxometal Complexes. Organic Peroxides; Ando, W., Ed.; Wiley: Chichester, New York, 1992; pp 559–598. (e) Meunier, B., Ed. Metal-Oxa and Metal-Peroxo Species in Catalytic Oxidations; Springer: Berlin, 2000.

^{(13) (}a) For methane activation with various V-, Nb-, and Ta-based metal—peroxo species, see: Hoehn, A.; Suess-Fink, G.; Shul'pin, G. B.; Nizova, G. V. German Patent DE 19720344, 1997; cf. *Chem. Abstr. 128*, 49802, 1997. (b) For oxidation of organic compounds with peroxo-metal complexes, see: Conte, V.; Di-Furia, F.; Moro, S. J. Phys. Org. Chem. **1996**, *9*, 329.

Conclusions

We have demonstrated a synthetic approach for the direct, liquid-phase sulfonation of methane with SO₃. Under the best suitable reaction conditions, 24% conversion of SO₃ to MSA was achieved. RhCl₃ emerged as an effective promoter when used with KO₂ serving as the radical initiator. It is proposed that a rhodium—peroxo or hydroperoxo species is formed in situ, which is a more effective free radical initiator than KO₂ in activating methane.

Experimental Section

Reactions were carried out in a 100 cm³ high-pressure autoclave (Parr Instruments: 3000 psig maximum) constructed of Hastelloy B. Unless otherwise stated, the following procedure was used for all experiments. Typically, 0.98 mmol of KO₂ (Aldrich Chemical Co.) and 0.31 mmol of RhCl₃ (Aldrich Chemical Co., 99.98%) were added to 5.7 g of fuming sulfuric acid (Aldrich Chemical Co., 27-33% SO₃) taken in the glass liner containing a Teflon-encased stirring bar at 0-5 °C. For some experiments, additional SO₃ (Aldrich Chemical Co., 99%) was added to the liquid in the liner. The glass liner was then transferred to the reactor, after which the reactor was sealed and attached to a gas handling system. The reactor was purged twice with N₂ (Matheson) and then twice with CH₄ (Matheson, ultrahigh purity) and then pressurized with CH₄ to 300 psig. The reactor was heated to 95 °C, a process which took 8-10 min, and this temperature was then maintained for up to 18 h, unless stated

otherwise. Following reaction, the reactor was cooled in an ice bath to room temperature (~ 0.35 h), and the reactor was vented. The gases exiting the reactor were passed through scrubbers containing NaOH and Carbusorb to remove sulfur (II) compounds. The system was then purged with N₂ purified by passage through oxysorb, ascarite, and molecular sieve traps. The liquid product was removed from the glass liner and added slowly to 0.5 g of H₂O to convert any unreacted SO₃ to H₂SO₄. Reaction products were characterized by ¹H NMR. All spectra were acquired using a Bruker AMX-400 MHz FT-NMR spectrometer. A capillary containing D₂O and CH₃OH, immersed within the NMR tube containing the sample, was used as a lock, reference, and integration standard. All other chemicals were purchased from Aldrich Chemical Co. and used without further purification. Products were identified by ¹H NMR. The chemical shift for methyl group of MSA was observed to be 2.9-3.07 ppm, depending on the concentration of MSA in the reaction mixture.

Acknowledgment

This work was supported by a grant from ATOFINA Chemicals, Inc. We acknowledge Dr. R. Vijay Srinivas and Dr. Gary S. Smith of ATOFINA Chemicals, Inc. for their valuable suggestions on different aspects of the research.

Received for review March 29, 2003.

OP0300140